Automation Tools for Developers: Real Workflows Without AI - CLI, Scripts & Open Source
Productivity & Workflow

Automation Tools for Developers: Real Workflows Without AI - CLI, Scripts & Open Source

Master free automation tools for developers. Learn to automate repetitive tasks, workflows, deployments, monitoring, and operations. Build custom automation pipelines with open-source tools—no AI needed.

Por Omar Flores · Actualizado: February 17, 2026
#automation #cli #scripts #workflows #devops #task-automation #shell-scripting #open-source #productivity #developer-tools #scheduling #monitoring #deployment #free-tools #build-automation

Introduction: Automation is Your Multiplier

Most developers waste 10-20 hours per week on repetitive tasks.

Deploying code manually. Running tests by hand. Checking system status. Updating documentation. Resetting test databases. Rebuilding Docker containers. Running backups. Scanning logs for errors.

Hours and hours of mindless repetition.

Meanwhile, some developers do the same work in a fraction of the time.

Why?

They automated.

Not with AI. Not with expensive tools.

With free, open-source automation tools that are simple, reliable, and actually work.

Here’s the truth: Automation is the most practical superpower a developer can have.

Every hour you automate is an hour you get back. Forever. Not once. Forever.

Automate a 30-minute weekly task? That’s 26 hours per year. Over a 10-year career, that’s 260 hours. That’s 6+ weeks of work.

Automate correctly, and you live in a different world.

This guide teaches you the automation tools that matter. Not the trendy ones. Not the ones that require AI or clouds or subscriptions.

The free ones. The reliable ones. The ones that actually solve problems.


Chapter 1: Understanding Automation Levels

Before diving into tools, understand what we’re automating.

Level 1: Simple Task Automation

You have a task that takes 5 minutes. You do it once a day.

Example: Backup your database to S3.

Without automation:

# Every morning you manually run
mysqldump -u user -p db_name | gzip > backup_$(date +%Y%m%d).sql.gz
aws s3 cp backup_$(date +%Y%m%d).sql.gz s3://backups/

Time: 5 minutes. Frequency: Daily.

With automation (cron job):

# Set once, runs forever
0 2 * * * mysqldump -u user -p db_name | gzip > /backups/backup_$(date +%Y%m%d).sql.gz && aws s3 cp /backups/backup_*.sql.gz s3://backups/

Time: 0 minutes (after setup). Frequency: Automatic.

Result: 5 min × 365 days = ~30 hours per year saved.


Level 2: Workflow Automation

You have a multi-step process. Steps depend on each other.

Example: Deploy new code to production.

Without automation:

  1. Pull latest code (2 min)
  2. Run tests (10 min)
  3. Build Docker image (5 min)
  4. Push to registry (3 min)
  5. Update Kubernetes (2 min)
  6. Verify deployment (3 min)

Total: 25 minutes. Happens 2-3 times per day.

With automation (CI/CD pipeline):

# GitHub Actions example
name: Deploy
on: [push]
jobs:
  deploy:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v2
      - run: npm test
      - run: docker build -t app:${{ github.sha }} .
      - run: docker push app:${{ github.sha }}
      - run: kubectl set image deployment=app app=app:${{ github.sha }}

Time: 0 minutes (automatic). Frequency: Every push.

Result: 25 min × 600 deployments/year = 250 hours per year saved.


Level 3: Intelligent Automation

Your automation detects conditions and responds intelligently.

Example: Monitor system health and take action.

Without automation:

  1. Manually check CPU/memory (1 min)
  2. Check error logs (5 min)
  3. If bad, restart service (2 min)
  4. Notify team (1 min)

Frequency: 3-5 times per week = 54 hours per year.

With automation (monitoring + alerting):

# Monitor continuously
while true; do
  cpu=$(top -bn1 | grep "Cpu(s)" | awk '{print 100 - $8}')
  if (( $(echo "$cpu > 80" | bc -l) )); then
    # Restart service
    systemctl restart myapp
    # Send alert
    curl -X POST https://hooks.slack.com/... -d "{\"text\": \"High CPU, restarted app\"}"
  fi
  sleep 60
done

Time: 0 minutes (running in background). Frequency: Continuous.

Result: 54 hours per year saved + better reliability.


Chapter 2: Cron Jobs - Scheduled Task Automation

The most basic automation is cron. It runs tasks on a schedule.

Cron Basics

Cron runs commands at specified times.

Format:

MIN HOUR DAY MONTH DAY_OF_WEEK COMMAND
 0    2    *    *        *      /path/to/script.sh

Fields:

  • MIN (0-59): Minute
  • HOUR (0-23): Hour (24-hour format)
  • DAY (1-31): Day of month
  • MONTH (1-12): Month
  • DAY_OF_WEEK (0-6): Day of week (0=Sunday, 6=Saturday)

Common patterns:

# Every minute
* * * * * command

# Every hour
0 * * * * command

# Daily at 2:00 AM
0 2 * * * command

# Weekly on Monday at 9:00 AM
0 9 * * 1 command

# Monthly on 1st at 3:00 AM
0 3 1 * * command

# Every 15 minutes
*/15 * * * * command

# Monday-Friday at 9:00 AM
0 9 * * 1-5 command

# Twice daily (9 AM and 9 PM)
0 9,21 * * * command

Setting Up Cron Jobs

Edit your crontab:

crontab -e

Add your job:

# Backup database daily
0 2 * * * /home/user/backup-db.sh

# Check disk space every hour
0 * * * * /home/user/check-disk.sh

# Deploy to staging every Sunday at midnight
0 0 * * 0 /home/user/deploy-staging.sh

View your crons:

crontab -l

Real Example: Automated Backups

Script: /home/user/backup-db.sh

#!/bin/bash

# Configuration
DB_NAME="production_db"
DB_USER="backup_user"
BACKUP_DIR="/var/backups/database"
S3_BUCKET="s3://company-backups"
RETENTION_DAYS=30

# Create backup
BACKUP_FILE="$BACKUP_DIR/backup_$(date +%Y%m%d_%H%M%S).sql.gz"
mysqldump -u $DB_USER -p$DB_PASS $DB_NAME | gzip > $BACKUP_FILE

# Upload to S3
aws s3 cp $BACKUP_FILE $S3_BUCKET/

# Delete old backups (local)
find $BACKUP_DIR -mtime +$RETENTION_DAYS -delete

# Delete old backups (S3)
aws s3 rm $S3_BUCKET --recursive --exclude "*" --include "backup_*.sql.gz" --older-than $RETENTION_DAYS

# Send notification
if [ $? -eq 0 ]; then
  echo "Backup successful: $BACKUP_FILE" | mail -s "DB Backup Success" admin@company.com
else
  echo "Backup failed!" | mail -s "DB Backup FAILED" admin@company.com
fi

Add to crontab:

0 2 * * * /home/user/backup-db.sh >> /var/log/backup.log 2>&1

Result: Automatic daily backups, retention management, error notifications.

Time saved: 30 min/week = 1560 hours over 10 years.


Chapter 3: Shell Scripts - Custom Automation

Cron handles scheduling. Shell scripts handle the logic.

Basic Shell Script Structure

#!/bin/bash

# Configuration at the top
CONFIG_FILE="/etc/myapp/config.conf"
LOG_FILE="/var/log/myapp.log"

# Functions
log_info() {
  echo "[$(date +'%Y-%m-%d %H:%M:%S')] INFO: $1" >> $LOG_FILE
}

log_error() {
  echo "[$(date +'%Y-%m-%d %H:%M:%S')] ERROR: $1" >> $LOG_FILE
}

# Main logic
main() {
  log_info "Starting automated task"

  # Do something
  if some_command; then
    log_info "Task completed successfully"
  else
    log_error "Task failed!"
    exit 1
  fi

  log_info "Exiting"
}

# Run
main "$@"

Real Example: Health Check & Recovery

Script: /usr/local/bin/app-health-check.sh

#!/bin/bash

APP_PORT=8080
APP_PID_FILE="/var/run/myapp.pid"
APP_RESTART_CMD="systemctl restart myapp"
SLACK_WEBHOOK="https://hooks.slack.com/..."

health_check() {
  # Check if app is responding
  http_code=$(curl -s -o /dev/null -w "%{http_code}" http://localhost:$APP_PORT/health)

  if [ "$http_code" != "200" ]; then
    return 1
  fi
  return 0
}

notify_slack() {
  local message=$1
  curl -X POST $SLACK_WEBHOOK \
    -H 'Content-type: application/json' \
    -d "{\"text\": \"$message\"}"
}

recover_app() {
  notify_slack "🚨 App health check failed. Attempting restart..."
  $APP_RESTART_CMD
  sleep 5

  if health_check; then
    notify_slack "✅ App recovered after restart"
    return 0
  else
    notify_slack "❌ App recovery failed. Manual intervention needed."
    return 1
  fi
}

# Main
if ! health_check; then
  recover_app
  exit $?
fi

exit 0

Add to crontab (every 5 minutes):

*/5 * * * * /usr/local/bin/app-health-check.sh

Result: Automatic recovery if app goes down. Slack notifications.


Chapter 4: GNU Make - Build Automation

Make is ancient, powerful, and perfect for automating build tasks.

Make Basics

Create a Makefile:

# Variables
PYTHON := python3
NODE := node
DOCKER := docker

# Targets
.PHONY: help install test build deploy clean

help:
	@echo "Available commands:"
	@echo "  make install  - Install dependencies"
	@echo "  make test     - Run tests"
	@echo "  make build    - Build application"
	@echo "  make deploy   - Deploy to production"
	@echo "  make clean    - Clean build artifacts"

install:
	pip install -r requirements.txt
	npm install

test:
	pytest tests/
	npm test

build:
	$(DOCKER) build -t myapp:latest .

deploy: build
	$(DOCKER) push myapp:latest
	kubectl apply -f deployment.yaml

clean:
	rm -rf __pycache__
	rm -rf build/
	rm -rf dist/

Use it:

make install    # Runs install target
make test       # Runs test target
make deploy     # Builds then deploys

Real Example: Multi-Step Deployment

# Variables
SERVICE_NAME := payment-api
REGISTRY := docker.io/company
VERSION := $(shell git rev-parse --short HEAD)
ENVIRONMENT := production

# Targets
.PHONY: build push deploy verify clean

build:
	@echo "Building $(SERVICE_NAME):$(VERSION)"
	docker build -t $(SERVICE_NAME):$(VERSION) .
	docker tag $(SERVICE_NAME):$(VERSION) $(SERVICE_NAME):latest

push: build
	@echo "Pushing to registry"
	docker tag $(SERVICE_NAME):$(VERSION) $(REGISTRY)/$(SERVICE_NAME):$(VERSION)
	docker tag $(SERVICE_NAME):latest $(REGISTRY)/$(SERVICE_NAME):latest
	docker push $(REGISTRY)/$(SERVICE_NAME):$(VERSION)
	docker push $(REGISTRY)/$(SERVICE_NAME):latest

deploy: push
	@echo "Deploying to $(ENVIRONMENT)"
	kubectl set image deployment/$(SERVICE_NAME) \
		$(SERVICE_NAME)=$(REGISTRY)/$(SERVICE_NAME):$(VERSION) \
		--namespace=$(ENVIRONMENT)
	kubectl rollout status deployment/$(SERVICE_NAME) -n $(ENVIRONMENT)

verify:
	@echo "Verifying deployment"
	@./verify-deployment.sh $(SERVICE_NAME) $(ENVIRONMENT)

rollback:
	@echo "Rolling back to previous version"
	kubectl rollout undo deployment/$(SERVICE_NAME) -n $(ENVIRONMENT)

clean:
	docker rmi $(SERVICE_NAME):$(VERSION) $(SERVICE_NAME):latest

Use it:

make deploy     # Build, push, and deploy
make rollback   # Rollback if needed
make verify     # Verify it's working

Chapter 5: Task Runners - Workflow Orchestration

For more complex workflows, use task runners like just or task.

GNU Task (taskfile)

Install:

# macOS
brew install go-task/tap/go-task

# Linux
sudo apt install go-task-cli

Create Taskfile.yml:

version: "3"

vars:
  SERVICE: payment-api
  REGISTRY: docker.io/company
  ENVIRONMENT: production

tasks:
  build:
    desc: Build Docker image
    cmds:
      - docker build -t {{.SERVICE}}:{{.VERSION}} .
      - docker tag {{.SERVICE}}:{{.VERSION}} {{.SERVICE}}:latest

  test:
    desc: Run test suite
    cmds:
      - pytest tests/
      - npm test

  push:
    desc: Push image to registry
    deps: [build]
    cmds:
      - docker tag {{.SERVICE}}:latest {{.REGISTRY}}/{{.SERVICE}}:latest
      - docker push {{.REGISTRY}}/{{.SERVICE}}:latest

  deploy:
    desc: Deploy to production
    deps: [push]
    cmds:
      - kubectl set image deployment/{{.SERVICE}} {{.SERVICE}}={{.REGISTRY}}/{{.SERVICE}}:latest -n {{.ENVIRONMENT}}
      - kubectl rollout status deployment/{{.SERVICE}} -n {{.ENVIRONMENT}}

  stop:
    desc: Stop all containers
    cmds:
      - docker stop $(docker ps -q)

  logs:
    desc: View service logs
    cmds:
      - kubectl logs -f deployment/{{.SERVICE}} -n {{.ENVIRONMENT}}

  default:
    desc: Build and test
    deps: [build, test]

Use it:

task build      # Build
task test       # Test
task deploy     # Build, test, push, deploy (all dependencies)
task logs       # View logs

Chapter 6: Watch Tools - File Monitoring & Auto-execution

Automatically run commands when files change.

entr - Execute on File Change

Install:

# macOS
brew install entr

# Linux
apt install entr

Use it:

# Run tests when .py files change
find . -name "*.py" | entr pytest tests/

# Rebuild when Go files change
find . -name "*.go" | entr go build

# Restart server when code changes
find . -name "*.rs" | entr cargo run

# Run multiple commands
ls src/*.js | entr npm test, npm run build

inotify-tools - File System Monitoring

Install:

sudo apt install inotify-tools  # Linux only

Use it:

#!/bin/bash

# Trigger action when file is modified
inotifywait -m -e modify src/ |
while read path action file; do
  echo "Detected change: $file"
  npm test
done

Real Example: Auto-Deployment on Git Push

#!/bin/bash

REPO_PATH="/opt/myapp"
DEPLOY_SCRIPT="/opt/deploy.sh"

# Watch for changes in repository
cd $REPO_PATH

while true; do
  git fetch origin
  UPSTREAM=$(git rev-parse origin/main)
  LOCAL=$(git rev-parse HEAD)

  if [ "$UPSTREAM" != "$LOCAL" ]; then
    echo "New commits detected. Deploying..."
    git pull origin main
    $DEPLOY_SCRIPT
  fi

  sleep 60  # Check every minute
done

Run as service:

# /etc/systemd/system/auto-deploy.service
[Unit]
Description=Auto Deploy on Git Push
After=network.target

[Service]
Type=simple
User=deploy
ExecStart=/usr/local/bin/auto-deploy.sh
Restart=always

[Install]
WantedBy=multi-user.target

Enable:

sudo systemctl enable auto-deploy
sudo systemctl start auto-deploy

Chapter 7: Log Analysis & Monitoring Automation

Automate log analysis and alerting.

Basic Log Analysis with grep & awk

#!/bin/bash

LOG_FILE="/var/log/myapp.log"
ERROR_THRESHOLD=10
TIME_WINDOW=60  # seconds

# Count errors in last N seconds
error_count=$(grep -c "ERROR" $LOG_FILE | tail -c 100)

if [ $error_count -gt $ERROR_THRESHOLD ]; then
  echo "Alert: $error_count errors detected"
  tail -50 $LOG_FILE | mail -s "App Alert" admin@company.com
fi

Real Example: Performance Degradation Detection

#!/bin/bash

LOG_FILE="/var/log/api.log"
THRESHOLD_MS=1000
SLACK_WEBHOOK="https://hooks.slack.com/..."

# Extract response times from last hour
grep "$(date -d '1 hour ago' +%Y-%m-%d)" $LOG_FILE | \
  awk '{print $NF}' | \
  awk -v threshold=$THRESHOLD_MS '$1 > threshold {count++} END {print count}' | \
  while read slow_requests; do
    if [ "$slow_requests" -gt 100 ]; then
      curl -X POST $SLACK_WEBHOOK \
        -H 'Content-type: application/json' \
        -d "{\"text\": \"🚨 Performance degradation: $slow_requests slow requests in last hour\"}"
    fi
  done

Add to crontab (every hour):

0 * * * * /usr/local/bin/check-performance.sh

Chapter 8: Database Maintenance Automation

Automate routine database maintenance.

Example: PostgreSQL Maintenance

#!/bin/bash

DB_NAME="production_db"
DB_USER="postgres"
LOG_FILE="/var/log/db-maintenance.log"

log_msg() {
  echo "[$(date +'%Y-%m-%d %H:%M:%S')] $1" >> $LOG_FILE
}

# Vacuum (garbage collection)
log_msg "Starting VACUUM"
psql -U $DB_USER -d $DB_NAME -c "VACUUM ANALYZE;"
log_msg "VACUUM completed"

# Reindex
log_msg "Starting REINDEX"
psql -U $DB_USER -d $DB_NAME -c "REINDEX DATABASE $DB_NAME;"
log_msg "REINDEX completed"

# Update table statistics
log_msg "Updating statistics"
psql -U $DB_USER -d $DB_NAME -c "ANALYZE;"
log_msg "Statistics updated"

# Check for bloated tables
log_msg "Checking for bloat"
psql -U $DB_USER -d $DB_NAME << EOF >> $LOG_FILE
SELECT
  schemaname,
  tablename,
  round(100 * pg_relation_size(schemaname||'.'||tablename) /
    pg_total_relation_size(schemaname||'.'||tablename)) AS table_ratio,
  pg_total_relation_size(schemaname||'.'||tablename) AS total_size
FROM pg_tables
WHERE schemaname NOT IN ('pg_catalog', 'information_schema')
ORDER BY total_size DESC;
EOF

log_msg "Maintenance complete"

Schedule in crontab (Sunday at 3 AM):

0 3 * * 0 /usr/local/bin/db-maintenance.sh

Chapter 9: Notification Automation

Send alerts through multiple channels automatically.

Slack Notifications

#!/bin/bash

notify_slack() {
  local message=$1
  local channel=${2:-#alerts}
  local webhook=$SLACK_WEBHOOK

  curl -X POST $webhook \
    -H 'Content-type: application/json' \
    -d "{
      \"channel\": \"$channel\",
      \"text\": \"$message\"
    }"
}

# Example: Deployment notification
notify_slack "🚀 Deployment to production complete. Version: v1.2.3"

# Example: Error alert with color
curl -X POST $SLACK_WEBHOOK \
  -H 'Content-type: application/json' \
  -d '{
    "attachments": [
      {
        "color": "danger",
        "title": "Critical Error",
        "text": "Database connection failed",
        "fields": [
          {
            "title": "Environment",
            "value": "production",
            "short": true
          },
          {
            "title": "Time",
            "value": "'$(date)'",
            "short": true
          }
        ]
      }
    ]
  }'

Email Notifications

#!/bin/bash

notify_email() {
  local subject=$1
  local body=$2
  local recipient=$3

  echo "$body" | mail \
    -s "$subject" \
    -r "automation@company.com" \
    "$recipient"
}

# Example
notify_email "Backup Complete" "Daily backup completed successfully" "admin@company.com"

Webhook Notifications

#!/bin/bash

notify_webhook() {
  local url=$1
  local event=$2
  local data=$3

  curl -X POST $url \
    -H 'Content-type: application/json' \
    -d "{\"event\": \"$event\", \"data\": $data}"
}

# Example
notify_webhook "https://api.company.com/webhooks/events" "deployment" "{\"version\": \"1.2.3\", \"environment\": \"prod\"}"

Chapter 10: Advanced Workflow Automation

Combine everything into sophisticated automation pipelines.

Real Example: Complete Release Automation

Taskfile.yml:

version: '3'

vars:
  SERVICE: myapp
  REGISTRY: docker.io/company
  SLACK_WEBHOOK: https://hooks.slack.com/...

tasks:
  release:
    desc: Complete release workflow
    deps: [test, build, push, deploy, notify]

  test:
    desc: Run all tests
    cmds:
      - echo "Running tests..."
      - pytest tests/
      - npm test

  build:
    desc: Build application
    cmds:
      - echo "Building {{.SERVICE}}..."
      - docker build -t {{.SERVICE}}:latest .

  push:
    desc: Push to registry
    cmds:
      - docker tag {{.SERVICE}}:latest {{.REGISTRY}}/{{.SERVICE}}:latest
      - docker push {{.REGISTRY}}/{{.SERVICE}}:latest

  deploy:
    desc: Deploy to production
    cmds:
      - kubectl set image deployment/{{.SERVICE}} {{.SERVICE}}={{.REGISTRY}}/{{.SERVICE}}:latest -n production
      - kubectl rollout status deployment/{{.SERVICE}} -n production

  verify:
    desc: Verify deployment health
    cmds:
      - sleep 30
      - kubectl get pods -n production | grep {{.SERVICE}}

  notify:
    desc: Send notifications
    cmds:
      - curl -X POST {{.SLACK_WEBHOOK}} -H 'Content-type: application/json' -d '{"text": "✅ Release complete for {{.SERVICE}}"}'

Crontab entry:

# Release every Friday at 6 PM
0 18 * * 5 cd /opt/myapp && task release

Real Example: Data Pipeline Automation

#!/bin/bash

# Configuration
DATA_SOURCE="https://api.datasource.com/export"
STAGING_DIR="/data/staging"
ARCHIVE_DIR="/data/archive"
PROCESSING_SCRIPT="/opt/process-data.py"
SLACK_WEBHOOK="$SLACK_WEBHOOK"

log_info() {
  echo "[$(date +'%Y-%m-%d %H:%M:%S')] INFO: $1" >> /var/log/data-pipeline.log
}

notify() {
  curl -X POST $SLACK_WEBHOOK -d "{\"text\": \"$1\"}"
}

# Step 1: Download data
log_info "Downloading data..."
curl -o $STAGING_DIR/data_$(date +%Y%m%d).csv $DATA_SOURCE

# Step 2: Validate format
log_info "Validating data..."
if ! head -1 $STAGING_DIR/data_$(date +%Y%m%d).csv | grep -q "expected_column"; then
  log_info "Data validation failed!"
  notify "❌ Data pipeline failed: validation error"
  exit 1
fi

# Step 3: Process data
log_info "Processing data..."
python $PROCESSING_SCRIPT $STAGING_DIR/data_$(date +%Y%m%d).csv

# Step 4: Archive
log_info "Archiving..."
gzip $STAGING_DIR/data_$(date +%Y%m%d).csv
mv $STAGING_DIR/data_$(date +%Y%m%d).csv.gz $ARCHIVE_DIR/

# Step 5: Cleanup old files
log_info "Cleaning up old archives..."
find $ARCHIVE_DIR -mtime +30 -delete

log_info "Pipeline complete"
notify "✅ Data pipeline completed successfully"

Schedule (daily at 1 AM):

0 1 * * * /usr/local/bin/data-pipeline.sh

Chapter 11: Building Your Automation System

Don’t try to automate everything at once. Build gradually.

Week 1: Task-Level Automation

Automate simple, repetitive tasks.

# Backup databases
0 2 * * * /usr/local/bin/backup-db.sh

# Update system packages
0 3 * * 0 /usr/local/bin/system-update.sh

# Check disk space
0 */4 * * * /usr/local/bin/check-disk.sh

Estimated time savings: 5 hours/week

Week 2: Workflow Automation

Automate multi-step processes.

# Automated tests on git push
# Deploy to staging on successful tests
# Notify team of results

Estimated time savings: 10 hours/week

Week 3: Monitoring Automation

Add automated health checks and recovery.

# Health checks every 5 minutes
# Auto-restart on failure
# Alert on critical issues

Estimated time savings: 15 hours/week

Week 4: Intelligence

Make automation smarter with decision logic.

# Detect anomalies
# Predict failures
# Suggest optimizations

Estimated time savings: 20+ hours/week

Automation ROI Calculator

Time per task: 15 minutes
Frequency: Daily (5 days/week)
Annual time: 15 min × 5 days × 52 weeks = 6,500 minutes = 108 hours

Setup time: 2 hours
Maintenance: 30 min/month = 6 hours/year

Net savings year 1: 108 - 2 - 6 = 100 hours
Net savings year 2+: 108 - 6 = 102 hours/year

Over 5 years: 100 + (102 × 4) = 508 hours saved

Appendix A: Essential Automation Tools Checklist

Scheduling:

  • ✅ Cron (built-in)
  • ✅ Systemd timers
  • ✅ AT command
  • ✅ Anacron (cron for non-24/7 systems)

Scripting:

  • ✅ Bash/Zsh
  • ✅ Python
  • ✅ Go
  • ✅ Node.js

Task Running:

  • ✅ GNU Make
  • ✅ Task (go-task)
  • ✅ Just
  • ✅ Makefile

File Monitoring:

  • ✅ entr
  • ✅ inotify-tools
  • ✅ watchman
  • ✅ nodemon (for Node.js)

Monitoring & Alerting:

  • ✅ Prometheus (metrics)
  • ✅ AlertManager (alerting)
  • ✅ Grafana (visualization)
  • ✅ ELK Stack (logging)
  • ✅ Telegraf (system metrics)

CI/CD:

  • ✅ Jenkins (self-hosted)
  • ✅ GitLab CI (if using GitLab)
  • ✅ GitHub Actions (if using GitHub)
  • ✅ Drone CI (lightweight)
  • ✅ Tekton (Kubernetes-native)

Deployment Automation:

  • ✅ Ansible (configuration management)
  • ✅ Terraform (infrastructure as code)
  • ✅ Docker (containerization)
  • ✅ Kubernetes (orchestration)
  • ✅ Helm (package management)

Notifications:

  • ✅ Slack webhooks
  • ✅ Email (mail command)
  • ✅ PagerDuty (incident response)
  • ✅ Telegram bots
  • ✅ Discord webhooks

Appendix B: Quick Automation Setup Script

setup-automation.sh:

#!/bin/bash

# Automation Setup Script
# Creates basic automation infrastructure

AUTOMATION_DIR="/opt/automation"
SCRIPTS_DIR="$AUTOMATION_DIR/scripts"
LOGS_DIR="/var/log/automation"
CRON_DIR="$AUTOMATION_DIR/cron"

echo "Setting up automation infrastructure..."

# Create directories
sudo mkdir -p $SCRIPTS_DIR
sudo mkdir -p $LOGS_DIR
sudo mkdir -p $CRON_DIR

# Create log rotation config
cat | sudo tee /etc/logrotate.d/automation > /dev/null <<'EOF'
/var/log/automation/*.log {
    daily
    rotate 14
    compress
    delaycompress
    notifempty
    create 0644 root root
    sharedscripts
    postrotate
        systemctl reload rsyslog > /dev/null 2>&1 || true
    endscript
}
EOF

# Create helper script
cat > $SCRIPTS_DIR/helper.sh <<'EOF'
#!/bin/bash

log_info() {
  echo "[$(date +'%Y-%m-%d %H:%M:%S')] INFO: $1" >> $LOG_FILE
}

log_error() {
  echo "[$(date +'%Y-%m-%d %H:%M:%S')] ERROR: $1" >> $LOG_FILE
}

notify_slack() {
  local message=$1
  curl -X POST $SLACK_WEBHOOK \
    -H 'Content-type: application/json' \
    -d "{\"text\": \"$message\"}" 2>/dev/null
}

retry_command() {
  local max_attempts=3
  local attempt=1
  while [ $attempt -le $max_attempts ]; do
    if "$@"; then
      return 0
    fi
    attempt=$((attempt + 1))
    sleep 5
  done
  return 1
}
EOF

chmod +x $SCRIPTS_DIR/helper.sh

# Create example scripts
cat > $SCRIPTS_DIR/health-check.sh <<'EOF'
#!/bin/bash
source "$(dirname "$0")/helper.sh"
export LOG_FILE="/var/log/automation/health-check.log"

log_info "Starting health check..."
# Add your health check logic here
log_info "Health check complete"
EOF

chmod +x $SCRIPTS_DIR/health-check.sh

# Create crontab template
cat > $CRON_DIR/crontab-template <<'EOF'
# Automation Crontab
# Edit and install with: crontab < crontab-template

# Health checks (every 5 minutes)
*/5 * * * * /opt/automation/scripts/health-check.sh

# Daily maintenance (3 AM)
0 3 * * * /opt/automation/scripts/maintenance.sh

# Weekly cleanup (Sunday at 4 AM)
0 4 * * 0 /opt/automation/scripts/cleanup.sh

# Environment variables
SHELL=/bin/bash
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin
SLACK_WEBHOOK=https://hooks.slack.com/...
EOF

echo "✅ Automation infrastructure ready!"
echo ""
echo "Next steps:"
echo "1. Edit crontab template: $CRON_DIR/crontab-template"
echo "2. Install crontab: crontab < $CRON_DIR/crontab-template"
echo "3. Add scripts to: $SCRIPTS_DIR"
echo "4. View logs: tail -f /var/log/automation/*.log"

Run it:

chmod +x setup-automation.sh
./setup-automation.sh

Appendix C: Automation Checklist

Planning:

  • ✅ Identify repetitive tasks (>15 min/week)
  • ✅ Calculate ROI (time savings vs setup effort)
  • ✅ Determine automation level needed
  • ✅ Plan error handling and notifications

Implementation:

  • ✅ Write automation script
  • ✅ Test in non-production
  • ✅ Add logging and error handling
  • ✅ Add notifications (Slack/email)
  • ✅ Test failure scenarios
  • ✅ Document process
  • ✅ Deploy to production

Maintenance:

  • ✅ Monitor automation logs weekly
  • ✅ Review success rate
  • ✅ Fix failures immediately
  • ✅ Optimize over time
  • ✅ Update documentation
  • ✅ Review for obsolete automations (quarterly)

Scaling:

  • ✅ Consolidate similar scripts
  • ✅ Extract common functions
  • ✅ Create libraries and helpers
  • ✅ Build dashboard to visualize automation
  • ✅ Document patterns for team reuse

Conclusion: The Automation Multiplier

Every hour you automate is an hour you get back. Forever.

Most developers work their entire careers without internalizing this.

They see automation as something “for DevOps” or “for operations.”

Wrong.

Automation is for anyone who does repetitive work.

And that’s every developer.

Start small. Automate one task. See the time savings. Get hooked.

In a year, you’ll have 100+ hours back.

In a career, you’ll have thousands.

That’s the power of automation.

Not AI. Not magic.

Just simple, reliable, free tools working for you in the background.

Building that system is one of the best investments you’ll make.

Start today.